HW07 - Kinetics

Started: Mar 22 at 10:56am

Quiz Instructions

Homework 07

Kinetics

Question 1		0.5 pts
Consider the reaction:		
$2O_3(g) \longrightarrow 3O_2(g)$	rate = $k[O_3]^2[O_2]^{-1}$	
What is the overall orde	er of the reaction and the order with respect to [O ₃]?	
① 1 and 2		
2 and 2		
1 and 3		
3 and 2		

Question 2	0.5 pts
When the reaction below:	
$3NO(g) \longrightarrow N_2O(g) + NO_2(g)$	
is proceeding under conditions such that 0.015 mol/L of N_2O is being formed each second, the reaction is and the rate of change for NO is	rate of the overall
O.015 M/s; -0.005 M/s	
O.015 M/s; -0.045 M/s	
O.030 M/s; -0.005 M/s	
0	

Question 3	1 pts

What is the rate law for the reaction below:

$$A + B + C \longrightarrow D$$

if the following data were collected?

Ехр	[A] ₀	[B] ₀	[C] ₀	Initial Rate
1	0.4	1.2	0.7	2.32x10 ⁻³
2	1.3	1.2	0.9	7.54x10 ⁻³
3	0.4	4.1	0.8	9.25x10 ⁻²
4	1.3	1.2	0.2	7.54x10 ⁻³

\bigcirc rate = 1.49x10 ⁻³ [B]] ³ [C
---	-------------------

$$\bigcirc$$
 rate = 5.37x10⁻³ [A] [B]³

$$\bigcirc$$
 rate = 1.79x10⁻³ [B]² [C]

$$\bigcirc$$
 rate = 3.36x10⁻³ [A] [B]³

$$\bigcirc$$
 rate = 4.48x10⁻³ [A] [B]² [C]

Question 4 1 pts

A chemical reaction is expressed by the balanced chemical equation:

$$A+2B \longrightarrow C$$

Consider the data below:

ехр	[A] ₀	[B] ₀	initial rate (M/min)
1	0.15	0.15	0.00110363
2	0.15	0.3	0.0044145
3	0.3	0.3	0.008829

Find the rate law for the reaction.

○ rate = k [A] [B]	
orate = k [A] [B] ²	
orate = k [A] ² [B]	
orate = k [B] ²	
Ourselian 5	_ ,
Question 5	.5 pts
Calculate the value of the rate constant (k) for the reaction in question 4.	
O 0.327	
0.000166	
0.00110	
O 0.00736	
Question 6	.5 pts
Question 6 If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at what initial rate is C formed?	
If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at what initial rate is C	
If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at what initial rate is C formed?	
If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at what initial rate is 0 formed? 0.00974 M/min	
If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at what initial rate is 0 formed? 0.00974 M/min 0.0314 M/min	
If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at what initial rate is 0 formed? 0.00974 M/min 0.0314 M/min	
If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at what initial rate is 0 formed? 0.00974 M/min 0.0314 M/min	
If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at what initial rate is 0 formed? 0.00974 M/min 0.0314 M/min	
If the initial concentrations of both A and B are 0.31 M for the reaction in questions 4 and 5, at what initial rate is 0 formed? 0.00974 M/min 0.0314 M/min 0.101 M/min -0.00974 M/min	

s halved. The initial rate in the second experiment will be how many times that of the	first?
O 8	
O 1	
O 2	
O 4	
Nonether 0	
Question 8	1 pts
rxn [A] ₀ [B] ₀ rate (M/s) 1 0.2 0.05 0.1 2 ? 0.05 0.4 3 0.4 ? 0.8	
	of A and B. Answers should be in
	of A and B. Answers should be in
ne order [A] then [B].	of A and B. Answers should be in
	of A and B. Answers should be in
ne order [A] then [B]. 0.20 M; 0.80 M 0.40 M; 0.10 M	of A and B. Answers should be in
ne order [A] then [B]. 0.20 M; 0.80 M 0.40 M; 0.10 M 0.40 M; 0.20 M	of A and B. Answers should be in
ne order [A] then [B]. 0.20 M; 0.80 M 0.40 M; 0.10 M 0.40 M; 0.20 M 0.80 M; 0.10 M	of A and B. Answers should be in
ne order [A] then [B]. 0.20 M; 0.80 M 0.40 M; 0.10 M 0.40 M; 0.20 M 0.80 M; 0.10 M 0.80 M; 0.20 M	

the activation energy is zero.	
the rate does not change during the reaction.	
the rate constant is zero.	
Question 10	0.5 pts
Consider the reaction below:	
$A + B \longrightarrow C$	
If it is 1st order in A and 0th order in B, a plot of In[A] vs time will have a slope that is	
O decreasing exponentially.	
increasing exponentially.	
O constant.	
Slowly increasing.	
Question 11	1 pts
Consider the reaction below:	
$H_2CO_3(aq) \longrightarrow CO_2(aq) + H_2O(I)$	
If it has a half-life of 1.6 sec, how long will it take a system with [H ₂ CO ₃] ₀ of 2M to reach [H ₂ CO ₃] of 125mM?	
○ 2.9 sec	
○ 3.2 sec	
Not enough information is given.	
○ 6.4 sec	

Question 12 1 pts

At a certain fixed temperature, the reaction below:	
$A(g) + 2B(g) \longrightarrow AB_2(g)$	
is found to be first order in the concentration of A and zeroth order in the concentration of B. The reaction is $0.05s^{-1}$. If 2.00 moles of A and 4.00 moles of B are placed in a 1.00 liter container, how many seconds before the concentration of A has fallen to 0.30 moles/liter?	
There is not enough information to answer.	
○ 37.94 sec	
O 10.22 sec	
O 2.83 sec	
Question 13	0.5 pts
The reaction below:	
$A \longrightarrow products$	
is observed to obey first-order kinetics. Which of the following plots should give a straight line?	
◯ In[A] vs k	
O [A] vs k	
○ In[A] vs k ⁻¹	
○ In[A] vs t ⁻¹	
(A) vs t ⁻¹	
O [A] vs t	
O In[A] vs t	

Question 14

For the reaction below:

cyclobutane(g) → 2ethylene(g)

at 800K, a plot of ln[cyclobutane] vs t gives a straight line with a slope of -1.6 s⁻¹. Calculate the time needed for the

concentration of cyclobutane to fall to 1/16 of its initial value.	
O 1.7 sec	
O 0.63 sec	
○ 1.6 sec	
○ 1.3 sec	
Question 15 1 pts	
The initial concentration of the reactant A in a first-order reaction is 1.2 M. After 69.3 sec, the concentration has fallen to 0.3 M. What is the rate constant k?	
onot enough information	
0.01 s ⁻¹	
0.02 s ⁻¹	
O 0.2 s ⁻¹	
Question 16 1 pts	
A reaction is found to be first order with respect to one of the reactant species, A. When might a plot of In[A] vs time NOT yield a straight line?	
when the rate also depends on the concentration of another reactant as well	
All of the other answers could be correct.	
if the reaction comes to equilibrium	
if the reaction has any significant backward rate	
	_

Question 17 0.5 pts

Consider the following elementary reactions:

a) NO + O₃
$$\longrightarrow$$
 NO₂ + O₂

b)
$$CS_2 \longrightarrow CS + S$$

c) O + O₂ + N₂
$$\longrightarrow$$
 O₃ + N₂

Identify the molecularity of each reaction respectively.

- tetramolecular, termolecular, pentamolecular
- bimolecular, unimolecular, termolecular
- all three elementary reactions are bimolecular
- it is impossible to know without knowing the overall reaction for each

Question 18 1 pts

A and B react to form C according to the single step reaction below:

$$A + 2B \longrightarrow C$$

Which of the following is the correct rate equation for [B] and the correct units for the rate constant of this reaction?

$$\bigcirc \frac{\Delta \left[B \right]}{\Delta t} \, = \, - \frac{2k \left[A \right] \left[B \right]}{\left[C \right]}; \quad \frac{1}{M \cdot s}$$

$$\bigcirc \frac{\Delta \left[B \right]}{\Delta t} \; = \; -k \left[A \right] \left[B \right]^2; \quad \frac{1}{M^2}$$

$$\bigcirc \frac{\Delta [B]}{\Delta t} = -2k [A] [B]^2; \quad \frac{1}{M^2 \cdot s}$$

$$\bigcirc \, \frac{\Delta \, [B]}{\Delta t} \, = \, -2k \, [A] \, [B] \, ; \quad \frac{1}{M \cdot s}$$

Question 19 1 pts

Consider the mechanism below:

$$NO_2 + F_2 \longrightarrow NO_2F + F$$
 k_1 , slow

Consider the reaction below: $H_2(g) + I_2(g) \longrightarrow 2HI(g)$ The proposed mechanism of this reaction is: $I_2 \rightleftharpoons 2I \qquad k_1, k_1 \text{(reverse rxn), fast}$ $2I + H_2 \longrightarrow 2HI \qquad k_2, \text{ slow}$ What is the rate of the overall reaction?

$\bigcirc rate = k_2 [I]^2 [H_2]$
$rate = \frac{k_1 k_2}{k_{-1}} [I_2] [H_2]$
$\bigcirc rate = k_1 k_2 [I_2] [H_2]$
$\bigcap rate = \frac{k_{-1}k_2}{k_1} [I_2] [H_2]$
$\bigcap rate = \frac{k_1 k_2}{k_{-1}} [I]^2 [H_2]$

A reaction rate increases by a factor of 655 in the presence of a catalyst at 37°C. The activation energy of the original pathway is 106 kJ/mol. What is the activation energy of the new pathway, all other factors being equal?

16,600 J/mol

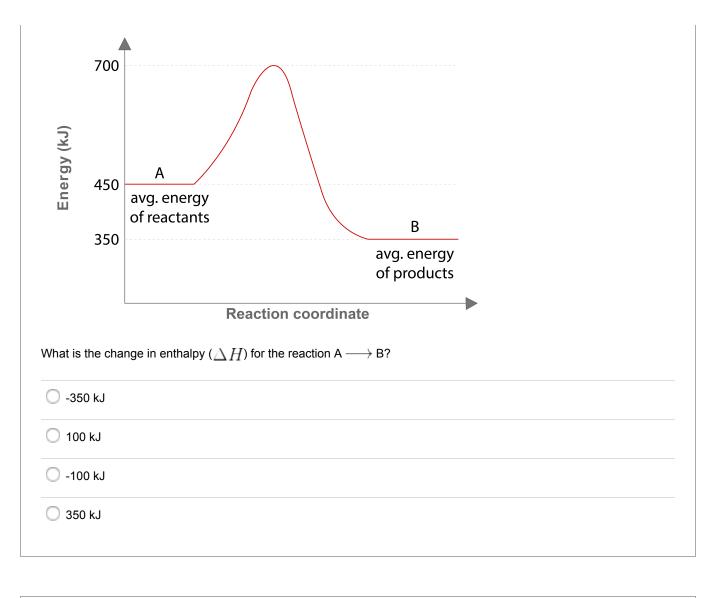
16,600 kJ/mol

89.3 kJ/mol

89.3 J/mol

A given reaction has an activation energy of 24.52 kJ/mol. At 25°C, the half-life is 4 minutes. At what temperature will the half-life be reduced to 20 seconds?

150°C


125°C

100°C

115°C

Question 24	1 pts
For the reaction below:	
$HO(g) + H_2(g) \longrightarrow H_2O(g) + H(g)$	
a plot of lnK vs 1/T gives a straight line with a slope equal to -5.1	x10 ³ K. What is the activation energy for this reaction?
O 42 kJ/mol	
12 kJ/mol	
○ 5.1 kJ/mol	
98 kJ/mol	
Question 25	1 pts
A certain reaction has an activation energy of 0.8314 kJ/mol and expression for the rate constant is correct?	a rate constant of 2.718 s ⁻¹ at -73°C. At -173°C, which
$\bigcirc \ln(k_2) = 1$	
\bigcap In(k ₂) = 1.5	
Question 26	1 pts
A food substance kept at 0°C becomes rotten (as determined by rots in 10.6 hours at 30°C. Assuming the kinetics of the microorg decay, what is the activation energy for the decomposition process rate produces a shorter decomposition time.	anisms enzymatic action is responsible for the rate of
23.4 kJ/mol	
0.45 kJ/mol	
2.34 kJ/mol	

O 67.2 kJ/mol	
Question 27	1 pts
A catalyst	
Changes the reaction mechanism to ensure that K is increased.	
increases K to favor product formation.	
Speeds up the reaction but does not change K.	
speeds up the reaction and increases K to favor product formation.	
Question 28	1 pts
O be more exothermic.	
proceed slower.	
oproceed faster.	
obe more endothermic.	
Question 29	1 pts
Consider the potential energy diagram below:	

Question 30	1 pts
Consider the potential energy diagram in question 39. What is the activation energy (E_a) for the reaction?	
○ 250 kJ	
○ 350 kJ	
○ 100 kJ	
○ 200 kJ	

Question 31	1 pts
Which of the following statements is TRUE?	

If the exponents in the rate-law do not match the coefficients in the balanced chemical equathat the reaction takes place in one step.	ation, then we know
The rate-law for a reaction can be predicted from the balanced chemical equation.	
The exponents in the rate-law must match the coefficients in the balanced chemical equation	on for the reaction.
If the exponents in the rate-law do not match the coefficients in the balanced equation, then reaction does not take place in one step.	we know that the
Question 32	1 pts
"Reaction mechanisms usually involve only unimolecular or bimolecular steps."	
Is this statement true or false?	
True, because steps of higher molecularity would not be compatible with observed reaction	rate laws.
True, because the activation energy for collisions of higher molecularity would be too great.	
O False.	
True, because collisions of higher molecularity would occur too infrequently to account for a	n observed rate.
Question 33	1 pts
	•
Which of the following is/are ALWAYS true concerning collision and transition state theory?	
I) Transition states are short-lived.	
II) A balanced reaction shows which species must collide for the reaction to occur.	
III) Intermediates are short-lived.	
O All are true.	
O III only	
O I and III	
O II only	
O I only	

Question 34	1 pts
Consider the following reaction mechanism:	
1) $Cl_2 + Pt \longrightarrow 2CI + Pt$	
2) CI + CO + Pt	
3) CI + CICO \longrightarrow CI ₂ CO	
Overall: $Cl_2 + CO \longrightarrow Cl_2CO$	
Which species is/are intermediates?	
O Pt, CI, CICO	
O Pt	
O Pt, Cl	
O CI, CICO	
O CICO	

Submit Quiz

Quiz saved at 10:56am

O II and III